71 research outputs found

    An inhibitory pull-push circuit in frontal cortex.

    Get PDF
    Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input

    Orexin Neurons Receive Glycinergic Innervations

    Get PDF
    Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM) sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2)-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation

    Nuclear Scaffold Attachment Sites within ENCODE Regions Associate with Actively Transcribed Genes

    Get PDF
    The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure

    Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines

    Get PDF
    In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome

    Micro-connectomics: probing the organization of neuronal networks at the cellular scale.

    Get PDF
    Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with RamĂłn y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group

    Orexin neurons as conditional glucosensors: Paradoxical regulation of sugar sensing by intracellular fuels

    No full text
    Central orexin/hypocretin neurons promote wakefulness, feeding and reward-seeking, and control blood glucose levels by regulating sympathetic outflow to the periphery. Glucose itself directly suppresses the electrical activity and cytosolic calcium levels of orexin cells. Recentin vitrostudies suggested that glucose inhibition of orexin cells may be mechanistically unusual, because it persists under conditions where glucose metabolism is unlikely. To investigate this further, and to clarify whether background metabolic state regulates orexin cell glucosensing, here we analysed glucose responses of orexin cells in mouse brain slices, in the presence and absence of metabolic inhibitors and physiological energy substrates. Consistent with their documented insensitivity to glucokinase inhibitors, the glucose responses of orexin cells persisted in the presence of the mitochondrial poison oligomycin or the glial toxin fluoroacetate. Unexpectedly, in the presence of oligomycin, the magnitude of the glucose response was significantly enhanced. In turn, 2-deoxyglucose, a non-metabolizable glucose analogue, elicited larger responses than glucose. Conversely, intracellular pyruvate dose-dependently suppressed the glucose responses, an effect that was blocked by oligomycin. The glucose responses were also suppressed by intracellular lactate and ATP. Our new data suggest that other energy substrates not only fail to mimic the orexin glucose response, but paradoxically suppress it in a metabolism-dependent manner. We propose that this unexpected intrinsic property of orexin cells allows them to act as 'conditional glucosensors' that preferentially respond to glucose during reduced background energy levels. © 2011 The Authors. Journal compilation © 2011 The Physiological Society

    Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels.

    No full text
    Central orexin/hypocretin neurons promote wakefulness, feeding and reward-seeking, and control blood glucose levels by regulating sympathetic outflow to the periphery. Glucose itself directly suppresses the electrical activity and cytosolic calcium levels of orexin cells. Recent in vitro studies suggested that glucose inhibition of orexin cells may be mechanistically unusual, because it persists under conditions where glucose metabolism is unlikely. To investigate this further, and to clarify whether background metabolic state regulates orexin cell glucosensing, here we analysed glucose responses of orexin cells in mouse brain slices, in the presence and absence of metabolic inhibitors and physiological energy substrates. Consistent with their documented insensitivity to glucokinase inhibitors, the glucose responses of orexin cells persisted in the presence of the mitochondrial poison oligomycin or the glial toxin fluoroacetate. Unexpectedly, in the presence of oligomycin, the magnitude of the glucose response was significantly enhanced. In turn, 2-deoxyglucose, a non-metabolizable glucose analogue, elicited larger responses than glucose. Conversely, intracellular pyruvate dose-dependently suppressed the glucose responses, an effect that was blocked by oligomycin. The glucose responses were also suppressed by intracellular lactate and ATP. Our new data suggest that other energy substrates not only fail to mimic the orexin glucose response, but paradoxically suppress it in a metabolism-dependent manner. We propose that this unexpected intrinsic property of orexin cells allows them to act as 'conditional glucosensors' that preferentially respond to glucose during reduced background energy levels

    Institutionalizing Ethics in Institutional Voids: Building Positive Ethical Strength to Serve Women Microfinance Borrowers in Negative Contexts

    No full text
    This study examines whether microfinance institutions (MFIs) that serve women borrowers at the base of the economic pyramid are likely to adopt a written code of positive organizational ethics (POE). Using econometric analysis of operational and economic data of a sample of MFIs from across the world, we find that two contextual factors—poverty level and lack of women’s empowerment—moderate the influence of an MFI’s percentage of women borrowers on the probability of the MFI having a POE code. MFIs that serve more women borrowers are more likely to adopt a POE code, especially in negative contexts (where women borrowers face poverty and disempowerment and are therefore susceptible to abuse). This study provides evidence that MFIs can build positive ethical strength in negative contexts
    • …
    corecore